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J .  P H Y S .  A ( G E N .  P H Y S . ) ,  1 9 6 9 ,  S E R .  2,  V O L .  2 .  P R I N T E D  I X  G R E A T  B R I T A I N  

Statistical mechanics far from equilibrium 
S. F. EDWARDS and W. D. McCOMB 
Department of Theoretical Physics, Schuster Laboratory, University of Manchester 
MS. received 8th November 1968 

Abstract. A study is made of the statistical mechanics of systems in which the 
dominant process is a flow of energy through the modes of the system. The case of 
randomly excited fluid turbulence is studied in detail and it is argued that there is a 
strong mathematical analogy between the classical (turbulent) cascade of energy and 
the quantum field or many-body problem. The energy has an analogue in the one- 
particle Green function, and entropy can be defined, the latter being the information 
content in the case of the probability distribution function for the turbulence. It is 
further argued that general operations in Hilbert space can be carried out with at 
most two functions, and that the energy equation and the maximization of the entropy 
give two equations which determine the two chosen unknown functions. As an 
example, the case of a random long-wave imput of energy is studied and shown to 
lead to the Kolmogoroff spectrum, and the Kolmogoroff constant is evaluated for 
the approximation system used. 

1. Introduction 
A variety of physical problems involve systems with a very large or infinite number of 

degrees of freedom. The  many-body problem in quantum and classical statistical mechanics 
is perhaps, currently, the most studied, but the quantum field theory of elementary particles 
is another evidently related case, whereas the statistical theory of turbulence and the theory 
of random systems are important problems which have not received so much attention in 
their theoretical aspects; a general account of such problems is given in the book by Beran 
(1968). In  this paper, a general discussion of these problems will be given, but as a detailed 
example calculations will be given for the case of turbulence, since this presents the full 
problem in its simplest form. This is not to say that turbulence is at all simple, but one 
cannot argue away from perturbation theory etc., as in the other problems, and one has to 
face the full problem at once. It is possible to cast these physical problems in the form of 
differential equations in function space, and it is the solution of these equations which will 
concern this paper. For example, consider a fluid which satisfies the Navier-Stokes equa- 
tions with a body force 9. If we let UE(r)  be the velocity field, then 

v being the viscosity andp the pressure, determined by the incompressibility condition (1.2). 
In  terms of the Fourier components in a box of side L:  

U(r ,  t )  = L - 3  2 e-ik.rUk(t) 
k 

where k = (277/L)(n1, n2, n 3 ) ,  n integers, one can write (1.1) as 

where KEGk" = 0, a condition which has been used to eliminate the pressure with the 
resulting introduction of M and 9. 

g k f f 8  = p f l - p p I k I - 2  (1.5) 
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where h = ( 2 r r / q 3  and 8kjI = 1 if k + j + l  = 0, zero otherwise. In  the limit of L -+ CO, 

h becomes d3k and 
8kJl + A8(k + j + l ) .  

Xow suppose that the force 3 fluctuates randomly in time with a Gaussian distribution 

where Jt" is a normalization JP89 = 1, where 8 9  means integration over all functions 
so that if () means average value 

(%k'(t)%kR(t')) = 2 h k 8 ( t -  t')8"'. (1.8) 
Now let us consider the probability P( ... 
Uka at the time t. The Liouville equation will be satisfied: 

... t )  of finding the U,' to have the values 

It is a well known theorem that if one denotes J P P ( 9 ) W  by (P), then 

(A proof is given by Chandrasekhar (1943) and also, in our present notation and point of 
view, by Edwards (1964, to be referred to as I).) Since (1.10) will be a basic equation of 
this paper and only ( P }  will appear in future the brackets will be dropped and P used 
henceforward for the solution of (1.10). 

The energy balance equation is obtained by multiplying (1.10) by the energy &Juz((r) d3r, 
i.e. X k U k U - k ,  which one can do for each component separately. Let 

g k u R q k  = (ukauk"8# 

(1.11) 

The total energy E = &Jqk d3k, and, as the &'term vanishes upon integration over k, 

$E -+j at vk2qkd3k = j 'hkd3k.  (1.12) 

Equation (1.1 1) means in words: for each mode k (change in energy) + (loss due to viscosity} 
+(transfer into and out of other modes) = (gain from outside). Equation (1.12) means: 
(total change in energy) + (total loss due to viscosity) = (total input from outside). Physically 
one can think of h k  as the rate of input of energy due to some random stirring force; the 
energy cascades through the system via the MUU term and disappears at large k owing to 
the viscosity. Provided hk = 0 for Ikl < some K,, and J h k  d3k = h, which is finite, one 
can expect a steady, if somewhat idealized, state to build up and a P which is time indepen- 
dent to result where 

This seems to be the simplest formulation of a turbulence problem: a differential equation 
in an infinite set of variables u k  where k fills a Cartesian three-dimensional space. No 
difficulty seems occasioned by letting the discrete k tend to the full infinite three-dimensional 
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continuum, and indeed it makes the mathematics simpler to do so. It is worth remarking 
that most work on turbulence discusses the much more difficult problem of the time 
correlations { uk(t)U-k(O)), but since there is a differential equation for the instantaneous 
correlation alone, this only will be in this paper apart from comments. 

Quantum field theory and the quantum many-body problem can be expressed in a 
similar way. Physical quantities can be evaluated from Green functions which are the 
correlation functions : 

<$(rl, tl)+(rs, tz) ... $*(r3, t3)+*(r4, t 4 ) )  = 1 $(rl, tl> ... $*(r8, t3) ... e(i/fi)sa+a+* (1.14) 

where S is Hamilton’s principal function, i.e. the time integral of the Lagrangian. For 
example, a system of electrons interacting with potential V(r) has, in the usual notation, 

$3 
d3x dt(+$* - $*$ - - (V+)( V+*) - p$+*) S = s 2m 

s + V(r - r’)+(r)+*(r)$(r’)+*(r’) d3r d3r’ dt. (1.15) 

Now one can put 

and see that 
eiS!fi = p (1.16) 

so that to obtain a form like (1.13) one may differentiate again to get 

----- P-(complex conjugate) = 0. C a+!** a+ a a+* as) 

(1.17) 

(1.18) 

(1.19) 

Of course one can go ahead and solve this equation back to (1,15), whereas one cannot solve 
(1.13) in any simple way. However, the existence of an exact and explicit form (1.15) 
still seems to be of little help in actually obtaining the values of ($(rl,tl) ,.. $* ...) so the 
differential form may well be a better starting point (see for example Edwards and 
Sherrington (1967) who develop the many-body problem from this point of view). Problems 
of disordered systems can also be cast in similar forms to (1.13), but we shall not pursue 
that here. 

When one considers non-linear differential equations of an infinite order it is clear 
that only rather simple and systematic operations can be usefully carried out in the Hilbert 
space spanned by the equation. One is led to ask what is the most general operation possible 
in such a space. Clearly linear operations are straightforward, but the most general operation 
possible on non-linear forms is described by the theorem which states that any two sym- 
metric or Hermitian forms may be simultaneously diagonalized. This theorem cannot be 
generalized in any way to more than two forms, or to cubic and higher forms. This theorem 
is reflected in the answer to the following question. If some model is taken for the differen- 
tial equation (1.13) (or (1.19)) and then used in an expansion theorem, what is the most 
general differential operator in a Hilbert space which permits such an expansion, i.e. if one 
takes 

( 9 o + W f =  0 
1 1 1 

f = fo- - 9 1  .fo+---E4,---91 fo+ ... 
9 0  2 0  9 0  

(1 20) 
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what is the most general so possible in a space of an infinite number of dimensions? The 
operatorso must contain two and not more than two quadratic forms, and be invertible: 
it must be a form of Hermite’s operator 

(1.21) 

(Linear terms in ;/ax and x may be added, but are trivial.) The theorem permits a trans- 
formation 

so that 
xi = K,,Yj 

(1 22) 

In  the case of (1.13) one has chosen a problem which is already homogeneous and isotropic, 
so the argument now is that the simplest model for (1.13) is 

(1 23 )  

(1.24) 

That this happens to have a similar form to the case without non-linearity is coincidental 
from the mathematical point of view, as is the fact that the system is already diagonal. 
(For pipe flow, for example, it would not be so.) The  coincidence, however, indicates 
that the mathematics is telling one that the concepts of a generalized diffusivity Dk and a 
generalized viscosity (or dynamical friction) wk are fruitful in the sense that they are 
mathematically tractable. It is important to emphasize again that it is not possible to 
construct a model with more than two unknown functions and still be able to use it generally, 
and equally important to realize that a model with only one unknown would not be using 
the full power of the mathematics available to us. One must now find criteria, both physical 
and mathematical, for the choice of D,, wk and hence solve the problem. 

2. The energy expansion 
Firstly consider (1 .11)  from the point of view of its physical content. There is an 

analogy between (1.13) and (1.19), as has been pointed out, and the analogy is heightened 
by the fact that whereas ( u ~ u - ~ )  represents the energy in the mode k, f = ($k(t)$k*(t))  
represents the number of electrons in the state K, i.e. of velocity hk/m. The total number 
of particles 

A’ = f f ( ~ )  d3v (2.1) 

E = 3 /qkd3k.  (2.2) 

whereas the total energy 

Now the distribution of particles satisfies the Boltzmann equation under the appropriate 
conditions (the Peierls-Boltzmann equation as applied to phonons, say, in the problem of 
thermal conductivity is the nearest analogy (Peierls 1955), which has the form 

= sources +sinks 
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where w is the scattering probability, There is of course no justification for believing this 
simplest form of transport equation will be valid, but nevertheless, if it were, one could 
expect 

where aqk/2i?t is put in brackets since our discussion has been for the case of a steady 
state. If, however, external conditions hk, vk2 changed very slowly in time, such a (aqk/2at) 
could be expected. The  two terms Aqq represent the rate at which energy flows into the 
mode qk, and out of it. If these two terms had been more generally defined the equation 
would have been a Pauli master equation, but it has already been cast in this form since 
the differential equation clearly suggests that the simplest flow of energy will be between 
the triad k, j ,  1. As is known from modern discussions of the extensions of the Peierls- 
Boltzmann equation, one can expect corrections to the kernel like A‘1’4kqjq1, etc., or, 
alternatively, one can say that it can be expected that if form (2.4) is exact, then the 11 
can be expected to be quite complicated. If one followed Peierls’ original derivation of his 
equation and thus calculated A4 in perturbation theory one would find 

Lkji 
n k j l  

vk2 +v j2+vZ2  
and 

the essential difference being that the Peierls case has real scattering and so ~ ( E ~ - E ~ - - ~ )  

where here one has dissipation, and hence (vk2+vj2+vZ2)-1 where elc is the energy of the 
particle labelled k, i.e. 

1 m 1 exp(-T(vk2+vj2+vi2)} dT = 
0 vk2 +v j2  +vi2’  

(An important application of the Peierls-Boltzmann equation has been made by Hassle- 
mann to the interaction of water waves which leads us to a generalization of (2.3).) The 
details of this derivation will not be given here since the present object is to get away from 
perturbation theory altogether, nevertheless it is important to realize that this form of 
equation has important properties such as the fact that under all conditions qk(t) > 0 and 

(In the absence of vk2 and hk the Boltzmann H theorem is also valid, but that is not useful 
in the present situation.) 

Equation (2.4) has been derived for turbulence in I, and that argument will now be 
briefly recapitulated. In  the form 

the averaging over 9 leads to the replacement of ( a / a u ) ( S )  by hka2/&kh-k where 
hk = j’(99) dt. It can be argued therefore that if LWuu were to be regarded as a 
random variable one might expect Muu a/& to be replaced in an equation for an ‘average’ 
P by something of order 

M&l (uu ) (uu )r 
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where T has the dimensions of a time. Put explicitly, if one writes (1.10) as 

S. F. Edwards and W. D. L!4cComb 

and expands, ascribing to hk-Dk and vk2- W k  the normal order M 2 ,  one has 

P = Po+P,+P,+ ... 

Since 

and since (by the central limit theorem) 

we choose that 

Then 

or 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

and so on. 
If indeed (2.13) is to satisfied one must not have terms in UkUk or constants in P,, 

which leads to 

i.e. 

(2.18) 



Statistical mechanics far from equilibrium 163 

The series 
P = Po+P,+P,+ .*. 

terminates for the variable 9 when averaged, at the P, level, but in the general problem 
it does not, and to order P, one has 

Avkjlukulf~k’jl‘  +c 
jl w k + w j + w 1  It‘ w k f w , + W k ‘ f W I ’  

Ik’ 

!dk’tLif : ~ k j 1 u k u j i ~ k , , , , u k , u l ’  / q k  
x-+ .c 
+ c  

p k  j1;k’I’ w k  + w j  + w k ’  + w1‘ 

] Po. (2.19) 

A first vital point to notice here is that the one condition (2.13) has produced the energy 
equation (2.18), but that the relationship between q k  and w k  is still completely open, and 
the resolution of the question of how to fix this relationship is the main point of this paper. 
Secondly one can in principle write down the nth order of the expansion by a diagrammatic 
technique invented in I. These diagrams are somewhat like the Feynman diagrams, but 
Feynman diagrams invented firstly for perturbation theory are most easily generalized by 
replacing perturbation values of ( u k u - k )  (i,e. of Green functions) by true values which is 
in the present point of view a ‘one quadratic form’ theory. The kind of split into two 
forms used here wiII require generalization. (There is an extensive discussion of Feynman 
diagrams and their generalization given by Wyld (1961), which is summarized by Beran 
(1968).) The generalization appears once a study is made of the series for P. I t  is clear 
that the problem encountered is to solve 

~ M k j l z ~ j U I ( U k / ~ k ) - ’ M k ‘ j ’ I ’ ~ , f ~ l ‘ ( ~ k ~  / q k )  

j lk’j’l’  w k  f w j  + + w k ’  f w j f  + w1’ 

a a 
D k + ,  W k u k )  P, = p0 x a polynomial in the uj .  

OUk 

The right-hand side can be rearranged into Hermite polynomials in the uj, hence into the 
form 

where ak denotes the order of the polynomial. For example 

The solution is 

(2.20) 

(2.21) 

(2.22) 

At this point the limit of infinite volume effects a great simplification for it turns out that 
only polynomials containing a particular uk at most once need be kept. Thus one must 
carry UkU, .,. (k  # j # .,.) and U k U - k -  q k  but not u k 2  or u k 3  etc. These all affect the 
answer to order 1/V, i.e. (d3k). The  condition (2.13) amounts to saying also that U k U - k - q k  

does not appear either, so that only first powers of any uk remain in the series for P, and 
the surviving can be labelled C!!!)k,,,... without loss of generality. T o  see the structure 
of P, one notes that the solution of (2.20) has only the effect of altering the coefficient from 
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Cn) to C ( n ) ( X ~ k ) - l .  This process can be understood in a graphical representation as \vi11 
be seen, so the expansion is in 

and if the factors ( & W k ) - l  are denoted by Q, the series for P consists of terms like 

and 

where 

1 a 1  a 1  a 
- lMUu - - MUU -- M U U  - . . . P o  sz at6 n au R 8 2 ~  

-(- 1 a aw ( - + R U ) ) E ( ~  1 a ( x + R u ) )  am‘ ... Po n au au 

(2.23) 
R = w k - v k 2 .  (2.24) 

(In I, W was called S, but that symbol is required here for the entropy.) Now consider 

Muu a j a u  to be denoted graphically by ww.ur( , the waky line for a / & ,  full lines for U 

and M b y  a dot. Similary the other differential operators are rLm and &. Since 

numerical factors i2-l have to be interposed to translate the graphical series into algebra, 
the symbols must be kept on a line: 

(2.25) 
T o  evaluate any expectation value J u k u l  ... P I I k  duk  the aj2u operators are most conveniently 
used to operate, by parts, to the left. They then either meet one of the U to their left, or 
one of the U multiplying P to form the expectation value, or act on unity and give zero. 
Thus the value of J p S u  is given at once by J p , S u  = 1, since all other terms commence 
with a differential and give zero. T o  use the condition 

s U k U - k P 8 U  = qkP8u = qk  s PO6u = qk (2.26) 

one finds that, since the first term in the expansion of P already gives q k ,  

1 U k U - k ( P - P O )  n d u k  = 0. (2.27) 

This integral will select those diagrams which are non-zero when two lines only are allowed 
to emerge to meet u k  and 2 i - k .  All other lines must be paired either in the form 

which contributes q k ,  i.e. ( U k u - k )  or which gives unity ( u k  a l a u k } .  

Thus h*.,h-. gives zero, 

k 
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which combine with the uku-k to give 

165 

These diagrams are completed by insertion of the C2 factor which consists of ( and 
w being inserted for every line between the dots, i.e. (wk+ wj+ ut)-'. Thus their value is 

These two diagrams from Wand R are likewise 

0 (2.28) 

and 

IYm (2.29) 

i.e. wk and R k .  Thus the condition (2.27) becomes 

or 
(2.30) 

which is our energy balance equation. Higher terms in the series may be computed and 
those observations which can be made about the conventional expansion methods may still 
be applied here. For example all the terms in the series must lead to quantities of the 
order of the volume of the system, which will arise when one takes the limit of a discrete 
set of k into the continuum 

(2.31) 

No terms in V 2  can occur on physical grounds, and indeed mathematical proofs of this 
can also be given. This means that the complete set of diagrams in the energy equation 

are always connected, and one never has things like -\\ 

For example, to the next order into the series, one gets terms 

(2.32) 
k 

d3p d3 m d3 n d3j d31 MMMIVlqnqDqk 
like 

(2.33) 

and permutations. Although the present diagrams differ from the Feynman-type diagrams 
in that two types of line appear, and R-I factors, the topology of the diagrams is the 
same. It follows that the theorems concerning connectivity of cluster expansions etc. will 
hold in the present case and need not be repeated. 

1 ( u p  + 0, + wk)(wm + w n f  w k f  wj)(wj + U [  + wk) 
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It is clear that all the higher corrections can be compressed into the notation (2.4), by 
allowing the ii to be series in q, and ( so that conservation and positive definiteness 
laws hold to all orders of accuracy. 

So the present situation is that the condition (2.27) has led to an energy equation, but 
this equation contains an unknown function wk. Now the assignment of 0, has to be made. 

3. The use of an entropy function 
Since the development involved two unknown functions clearly two conditions need 

to be invoked. In the previous section expanding about the mean value has given one 
condition which is in fact the energy equation. The  question now arises as to how the 
second condition can occur. Previous approaches to this problem have been made though 
not perhaps in quite so explicit a form, i.e. in previous treatments the fact that the wk really 
is completely open at this stage was not appreciated. For example, in I, it was argued that 
since U, has the dimension of a lifetime, it should be taken to be the response lifetime of 
the system to a small disturbance in the external parameters in the mode k. Since under a 
slowly varying change in hk and vk2 

if 6v and Sh cause Sq, 
2 n 

Another approach is obtained from the work of Kraichnan. Kraichnan has derived equa- 
tions for the time dependent correlation functions, which are therefore more general in 
their scope than the present calculation. But the time response problem needs to be 
solved in his equation and to do this he uses the direct-interaction approximation which 
gives rise to coupled equations for the velocity correlation and the time decay of a fluctuation 
in the Kth mode. As Kraichnan (1964) has pointed out, if one approximates his equations 
by forcing them into an exponential decay frameivork one can deduce (3.1), but U ,  is 
now to be taken as the eigenvalue of the first excited state of Liouville’s equations treated 
as was (2.9). Within the present paper’s framework this amounts to expanding the first 
state of Liouville’s equation around UkPO (which is the first excited state of -Yo), This gives 

This has also been deduced by Herring (1965) in his treatment of turbulence from a self- 
consistent field point of view. The choice of an exponential decay structure is also used 
in the quantum many-body problem in which it is known as the quasi-particle hypothesis 
(Edwards and Sherrington 1967, Balian and de Dominicis 1964). It is believed to have 
widespread validity, but the key problem of turbulence is to investigate the limit of very 
large Reynolds number which is equivalent to very strong coupling in the many-body 
problem, i.e. to critical behaviour, and there is no reason to expect the validity of the quasi- 
particle approximation there. The  idea of wk being related to the time decay of the system 
has been further studied by Edwards (1965), but that treatment is not convincing. The 
basic trouble is that the equations contain integrations which are strongly divergent near 
j N 0, so that in (3.1), for example, the two terms in the kernel are separately divergent 
and a finite answer can only arise if they cancel near j N 0. But this means that near 
j N 0 the modes are not really independent, i.e. when one talks of J’Akjlqkqi d3j d31 as 
the flow out of the mode k,  and J’R,,qjql d3j d31 as the flow into the mode k ,  this becomes 
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rather meaningless since it is only the net change which has meaning. Indeed all the 
prescriptions mentioned above are in fact arbitrary, and from the present point of view 
any argument involving time scales is ruled out since the entire development has been for 
the steady state, and the problem of solving (2.18) lies entirely within that equation without 
reference to the fact that it is part of a more general problem. One needs a new principle 
to fix wk. In  his original papers Kraichnan ennunciated a principle of maximal randomness, 
which he argued led to his equation for the response function. However, from the present 
point of view equations for the response function are, rather, additional hypotheses not 
directly related to a maximal property. The  idea, however, that the state of turbulence is in 
some sense the most chaotic permitted by the equation of motion is an attractive one. One 
knows that in thermal equilibrium the system takes up all the phase space permitted to it 
with equal weight. It seems reasonable that the turbulent system will also occupy as 
much of phase space as is permitted by the equation of motion. In  equilibrium special 
reasons are available to make the solution of the problem (the Gibbs distribution) easily 
accessible. In  the present case there are no invariants available, but on the other hand 
there is in (2.10) a solution to the equations of motion. It is also true that the concept of 
entropy, when interpreted as information, is available for any system, without reference 
to equilibrium. The general form discussed by Shannon (Shannon and Weaver 1949) is 

S =  - - K  [ P l n P  (3.5) 

where P is the probability distribution, and the integral is taken over all the variables of 
the distribution. It is to be noted that the value of S in general depends on the variables 
chosen. It is not possible to give a value for S independent of the choice of variables except 
in the case of thermal equilibrium which has canonical systems. Put in the sense that the 
entropy of a telephone exchange will depend on whether it is running in English or German 
this is not surprising, but at first sight it appears rather unpaIatable in a physical theory. 
The  fact is, however, that the accuracy of expansions given for q k  and that for S to be 
given below do depend on the variables used, and if instead of the uk some other system 
were used an expansion of different accuracy would result. The  ilk are however so obvious 
and useful as variables there seems no alternative or indeed the need for one. Since S 
defined by (3.5) is equivalent to that of the microcanonical ensemble, one can say that the 
expansion containing the least information, i.e. the maximum of entropy, will be given by 

8s -- - 0. 

(The condition for a canonical ensemble would be SF = 0 where F is the free energy, 
since F = F ( T ,  V ,  N )  where T = aEj8S. We prefer not to attempt to argue whether any 
analogue of F exists since we have S = s(qk, w,) and with an equation for qk in existence 
a s / a w k  = 0 will complete our set. It is clear that one would need a Tk = 8qk/8S etc. 
and so an Fk = qk-Tk &"/aT,. In  this sense 6' is the most fundamental variable, and 
one could even argue that our equation for q k  could be replaced by 8S/aq, = 0 or by 
putting in an external source Ak and differentiating twice with respect to A at A = 0. 
This latter turns out to be much the same as the form already used, so it will not be pursued.) 

This equation is a direct maximization of the randomness of the system, and the question 
now arises as to its practicality. If one goes ahead na'ively, expanding In P about Po one has 
firstly 1 Po In Po n d U k  = 1 nqk-'I2 eXp (- 2 

k k k qk 

= c 1-42 lnqk. 
k k 
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The &I is an infinite constant relating to the dimension of the k space and remains 
absolutely fixed throughout the calculation, so may be dropped. (It is of course simply the 
number of degrees of freedom of the system and quite uninteresting.) Hence 

Collecting terms of order M 2  in the expansion of P the next terms are 

other terms vanishing because of (2.27). These can be expressed in terms of diagrams 

(3.11) 

(which will be justified shortly). At this point we recall the remark made earlier in com- 
parison of the present diagrams with the Feynman diagrams. The  fact that physical quan- 
tities had to be extensive, i.e. depend on V alone, meant that only connected diagrams 
could occur, and, whereas the present diagrams were more complicated, these topological 
theorems had still to be valid. It is also to be noted that although in this paper our attention 
is on the extreme non-equilibrium system the mathematical structure is topologically no 
different from the quantum many-body problem. Now the entropy is also extensive and 
cluster expansions for it consist of all connected closed diagrams (whereas the correlation 
function is made of all connected diagrams with one line entering and one leaving). This 
has been shown in explicit detail for the quantum many-body problem, but in addition 
the method of splitting the lines has also been used in the many-body problem, and has 
been shown to be possible for the entropy by Balian and de Dominicis. Although, therefore, 
this is not physically the problem studied here we may be confident that a closed connected 
diagram expansion is available for the entropy. T o  obtain the expansion it is convenient 
to write 

P = Po(Po-lPPo) 
so that 

s = so+ J ( P ~ + P , +  ...> I ~ ( ~ + P ~ - ~ ( P , + P ~ ) P ~ ) G ~ .  (3.12) 

Keeping the principal line of the text for the expansion (2.25) of P, the powers from the 
logarithm can be written on lines of their own above that, i.e. 

Po-lP,Po , 
+ 5 . .  (3.13) s YP2po s = so+ p - l p l p o +  ~ P o - ' P , P o +  

Po 

+ 

I 

+ . . .  . (3.14) 
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One now no longer has to think of the a/au line acting exlusively to the left; it can act in 
any direction since there is a P,-l on the left. The  old rule still applies on the principal 
line which is the expansion of P. Thus from (Po-1P,Po)2P,, i.e. 

one obtains 

From (Po-lPIP,)P1 one obtains the same. From P2, i.e. 

(3.15) 

(3.16) 

one obtains zero. 

(amongst others) 
In  general, diagrams will be quite complicated, e.g. from (Po-1PlPo)4 one obtains 

kz 
&fhf-MMq&,qk, d3(k1 . . k,) 

= 1 (w2f w3 f wq)(w1 f + w,j)(w3+ wg f w g ) ( w l f  U&) 

(3.17) 4 

MfMM-Mqlq3!?4q5q2 - ' 4 6  - d 3 ( k 1  * * * k 6 )  

( w z f W 3 f W 4 ) ( W 1 f W 2 $ W g ) ( W 3 f W j f w s ) ( W 1 f w g f w q )  
k,m3 

k o  (3.18) 

and SO on. The most noticeable difference to the energy equation is the new occurrence of 

wv..mw+,vvwv+ i.e. q - l  in S: a formal proof that only connected diagrams survive will 

not be given since it has been considered by Balian and de Dominicis. Physically of course, 
since S must vary as V,  this must be the case. If one differentiates S with respect to wk 
only, one obtains the desired second equation and so a pair of equations which are both 
nominal in M can be obtained. 

4. Calculation 
The equations are of course both of infinite order and one has to cut them off to make a 

closure. This must amount to cutting off at a certain power of M since the desirable 
properties of the equation hold to each order in k!. When differentiating with respect to 
f.o& one has 

D k  

wk 
q& = -- 
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Strictly speaking one is therefore left with an unpleasant integral equation still to  be solved 
for s o j j s u k  (which is obtained by differentiating the energy equation rewritten in terms of 
Dk = q k u k ) .  In  fact, in order to get an answer we shall drop this term; the computation 
involved in keeping it is tremendous and all we have been able to do is to check that the 
fact that a solution exists is not affected by the neglect of this term. One is then left, to 
order :VI2, with the equations 

1 = o .  (4.3) +21 ( w k + w n + w 1 ) 3  

Lknlqnql  - L l k n q n  d3k d31 

The case of a cascade of energy is that when h k  is peaked near the origin in k, i.e. 
12, -h8(k) and v is rather small in the range of k of interest. Then energy .enters very 
long wavelengths, cascades down the spectrum and is lost at large lz (in a way which does 
not matter vitally to us, since there is so much k space as lkl -+ 03 that the precise mechanism 
of loss does not matter). It has long been surmised that under these circumstances 

where q is a number; this is the Kolmogoroff distribution. As has been noted elsewhere 
(Edwards 1965), if it is assumed that W k  = wh1131k/2'3 equation (4.2) does indeed have the 
solution (4.4), the integrals having to be evaluated very carefully to ensure the cancellation 
between the two terms of the kernel. The  non-uniform convergence of the integrals 
near k = 0 produces the h8(k) of the right-hand side (and also another 8 function at 
infinity which takes the place of v k 2 q k  if the Kolmogoroff distribution is to hold over all 
k space). Xow we may also see that w k  = h1131k12'3~; q k h 2 ' 3 1 k l - 1 1 ' 3 q  is a solution of (4.3) 
provided that the integrals converge. Careful evaluation shows that they do, and that 

and, since from (4.2) 

one has 
(c' = 3 . 3  

(4.7) 

47rq = 5.5. (4.9) 

The Kolmogoroff distribution is thus 

f-( Ikj) = 5.5/?2!3 kj -513. (4.10) 

This is not a particularly good agreement with experiment (which according to Gibson and 
Schwartz (1963) is 1.3  h2/3 jk] -5 '3) ,  but it does at least exist, and some rather crude approxi- 
mations particularly in dropping the awkward terms in (4.1) have been made. One is of 
course making an expansion in (4.2), (4.3) which cannot be expressed in terms of a coupling 
constant, and in default of any watertight argument to justify it, the best thing has seemed to 
go ahead and see at least if sensible answers can be obtained. It is clear why (4.3) succeeds 
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compared with earlier attempts. The  natural occurrence of pairs of terms in the kernel 
leads to vital cancellations lacking in, say, (3.3) which now appears to be a very arbitrary 
ansatz for closure. It can also be argued that since entropy can be defined for the non- 
equilibrium process, and since it seems reasonable that subject to the equations of motion 
the system will indeed take up a state of maximal randomness, the introduction of this 
function is a necessary and inevitable step in understanding these processes and in de- 
veloping methods of solution. 

5. Conclusion 
I t  has been argued that the study of problems like turbulence which reduce to the 

solution of stochastic functional differential equations, is closely related to field theory 
and many-body problems. Thus techniques and functions developed for these problems 
in thermal equilibrium can be extended with appropriate modifications to the non-equili- 
brium solution of turbulence. The work in this paper is in many ways still of a tentative 
nature, and still lacks a criterion for the accuracy of the expansion. Nevertheless the 
theory achieves sufficient accuracy to obtain the Kolmogoroff spectrum and though to say 
that a theory is not manifestly false may appear small praise, it is still an advance, and it is 
hoped will lead to a better understanding of the phenomena and accuracy of expansion. We 
wish to emphasize again the lack of manoeuvrability in Hilbert space problems. We claim 
that for general operations one cannot go further than two unknown functions. It is of 
course always possible to introduce say (u,u,u,>, (Uk~p&,) etc. as new unknowns and 
produce closures in terms of q k  and them. But these must be arbitrary in the sense firstly 
that they do not stem from general principles, as do (4.2) and (4.3), and that a general 
expansion cannot be made in terms of them. 

Little has been said here about time dependence. Recent work of Kraichnan (1965) 
suggests that this cannot be studied by a simple extension of Eulerian concepts, and whether 
the present work mill extend to time dependence remains to be seen. 
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